Abstract

Quantifying the complex/multifractal organization of the brain signals is crucial to fully understanding the brain processes and structure. In this contribution, we performed the multifractal analysis of the electroencephalographic (EEG) data obtained from a controlled multiple sclerosis (MS) study, focusing on the correlation between the degree of multifractality, disease duration, and disability level. Our results reveal a significant correspondence between the complexity of the time series and multiple sclerosis development, quantified respectively by scaling exponents and the Expanded Disability Status Scale (EDSS). Namely, for some brain regions, a well-developed multifractality and little persistence of the time series were identified in patients with a high level of disability, whereas the control group and patients with low EDSS were characterized by persistence and monofractality of the signals. The analysis of the cross-correlations between EEG signals supported these results, with the most significant differences identified for patients with EDSS >1 and the combined group of patients with EDSS ≤1 and controls. No association between the multifractality and disease duration was observed, indicating that the multifractal organization of the data is a hallmark of developing the disease. The observed complexity/multifractality of EEG signals is hypothetically a result of neuronal compensation – i.e., of optimizing neural processes in the presence of structural brain degeneration. The presented study is highly relevant due to the multifractal formalism used to quantify complexity and due to scarce resting-state EEG evidence for cortical reorganization associated with compensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.