Abstract

The Multifractal Detrended Fluctuation Analysis (MF-DFA) is an effective method that allows detecting multifractality in non-stationary signals. We applied the MF-DFA to the continuous seismic signal recorded at El Hierro volcano (Canary Islands), which was affected by a submarine monogenetic eruption in October 2011. We investigated the multifractal properties of the continuous seismic signal before the onset of the eruption and after. We analysed three frames of the signal, one measured before the onset of eruption that occurred on October 10, 2011; and two after, but corresponding to two distinct eruptive episodes, the second one started on November 22, 2011 and lasting until late February 2012. The results obtained show a striking difference in the width of the multifractal spectrum, which is generally used to quantify the multifractal degree of a signal: the multifractal spectra of the signal frames recorded during the eruptive episodes are almost identical and much narrower than that of the signal frame measured before the onset of the eruption. Such difference indicates that the seismic signal recorded during the unrest reflects mostly the fracturing of the host rock under the overpressure exerted by the intruding magma, while that corresponding to the eruptive phases was mostly influenced by the flow of magma through the plumbing system, even some fracturing remains, not being possible to distinguish among the two eruptive episodes in terms of rock fracture mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.