Abstract

Valuable emissive properties of organic fluorophores have become indispensable analytical tools in biophotonics, but frequently suffer from low solubilities and radiationless deactivation in aqueous media, that is, in biological ambience as well. In this report, nanoscaled dye-clay hybrids based on laponite, Na0.7 {(Li0.3 Mg5.5 )[Si8 O20 (OH)4 ]}, are taken advantage of to solubilize neutral dyes, which are natively not encountered in water. Previously reported efficiency and solubility bottlenecks of such hybrids can to a large extent be overcome by comparably simple chemical measures, as demonstrated here for two prominent examples, the fluorescent dyes Nile Red and Coumarin 153. On controlled co-adsorption of small bifunctional quaternary ammonium ions (Me3 N(+) C2 H5 OH and Me3 N(+) C2 H5 NH2 ) we observed an outright efficiency boost by an order of magnitude, and a 30-fold brightness gain. Even at higher concentrations, transparency and stability of the hybrid dispersions are retained, rendering them useful for employment as optically functional nanoparticles in bioassays and beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call