Abstract

Common non-focused areas are often present in multi-focus images due to the limitation of the number of focused images. This factor severely degrades the fusion quality of multi-focus images. To address this problem, we propose a novel end-to-end multi-focus image fusion with a natural enhancement method based on deep convolutional neural network (CNN). Several end-to-end CNN architectures that are specifically adapted to this task are first designed and researched. On the basis of the observation that low-level feature extraction can capture low-frequency content, whereas high-level feature extraction effectively captures high-frequency details, we further combine multi-level outputs such that the most visually distinctive features can be extracted, fused, and enhanced. In addition, the multi-level outputs are simultaneously supervised during training to boost the performance of image fusion and enhancement. Extensive experiments show that the proposed method can deliver superior fusion and enhancement performance than the state-of-the-art methods in the presence of multi-focus images with common non-focused areas, anisotropic blur, and misregistration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.