Abstract
Multifocal transcranial direct current stimulation (tDCS) targeting several brain regions is promising for inducing cortical plasticity. It remains unknown whether multifocal tDCS aimed at the resting-state motor network (network-tDCS) can revert N2-P2 cortical responses otherwise attenuated during prolonged experimental pain. Thirty-eight healthy subjects participated in 2 sessions separated by 24 hours (Day1, Day2) of active (n = 19) or sham (n = 19) network-tDCS. Experimental pain induced by topical capsaicin was maintained for 24 hours and assessed using a numerical rating scale. Electrical detection and pain thresholds, and N2-P2 evoked potentials (electroencephalography) to noxious electrical stimulation were recorded before capsaicin-induced pain (Day1-baseline), after capsaicin application (Day1-post-cap), and after 2 sessions of network-tDCS (Day2). Capsaicin induced moderate pain at Day1-post-cap, which further increased at Day2 in both groups (P = .01). Electrical detection/pain thresholds did not change over time. N2-P2 responses were reduced on Day1-post-cap compared to Day1-baseline (P = .019). At Day2 compared with Day1-post-cap, N2-P2 responses were significantly higher in the Active network-tDCS group (P<.05), while the sham group remained inhibited. These results suggest that tDCS targeting regions associated with the motor network may modulate the late evoked brain responses to noxious peripheral stimulation otherwise initially inhibited by capsaicin-induced pain. PerspectiveThis study extends the evidence of N2-P2 reduction due to capsaicin-induced pain from 30 minutes to 24 hrs. Moreover, 2 sessions of tDCS targeting the motor network in the early stage of nociceptive pain may revert the inhibition of N2-P2 associated with capsaicin-induced pain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.