Abstract

BackgroundForests in urban landscapes differ from their rural counterparts in ways that may alter vector-borne disease dynamics. In urban forest fragments, tick-borne pathogen prevalence is not well characterized; mitigating disease risk in densely-populated urban landscapes requires understanding ecological factors that affect pathogen prevalence. We trapped blacklegged tick (Ixodes scapularis) nymphs in urban forest fragments on the East Coast of the United States and used multiplex real-time PCR assays to quantify the prevalence of four zoonotic, tick-borne pathogens. We used Bayesian logistic regression and WAIC model selection to understand how vegetation, habitat, and landscape features of urban forests relate to the prevalence of B. burgdorferi (the causative agent of Lyme disease) among blacklegged ticks.ResultsIn the 258 nymphs tested, we detected Borrelia burgdorferi (11.2% of ticks), Borrelia miyamotoi (0.8%) and Anaplasma phagocytophilum (1.9%), but we did not find Babesia microti (0%). Ticks collected from forests invaded by non-native multiflora rose (Rosa multiflora) had greater B. burgdorferi infection rates (mean = 15.9%) than ticks collected from uninvaded forests (mean = 7.9%). Overall, B. burgdorferi prevalence among ticks was positively related to habitat features (e.g. coarse woody debris and total understory cover) favorable for competent reservoir host species.ConclusionsUnderstory structure provided by non-native, invasive shrubs appears to aggregate ticks and reservoir hosts, increasing opportunities for pathogen transmission. However, when we consider pathogen prevalence among nymphs in context with relative abundance of questing nymphs, invasive plants do not necessarily increase disease risk. Although pathogen prevalence is greater among ticks in invaded forests, the probability of encountering an infected tick remains greater in uninvaded forests characterized by thick litter layers, sparse understories, and relatively greater questing tick abundance in urban landscapes.

Highlights

  • Forests in urban landscapes differ from their rural counterparts in ways that may alter vector-borne disease dynamics

  • Covariate data collection We identified a set of 25 variables that we expected would influence B. burgdorferi infection rates by increasing or decreasing interactions between larval ticks and competent reservoir hosts (Tables 1 and 2)

  • In our comparison of invaded and uninvaded forest fragments, we found that B. burgdorferi prevalence among questing ticks did not differ within invaded forests, but that the infection prevalence in ticks from invaded forests was almost double that in ticks from uninvaded forests

Read more

Summary

Introduction

Forests in urban landscapes differ from their rural counterparts in ways that may alter vector-borne disease dynamics. Old) forests and forest fragments that have regrown from fallow agricultural land set aside while surrounding areas were developed [6] In the latter case, native tree species have competed with and grown alongside non-native species that were part of the agricultural landscape or subsequent development. Regrown urban forest patches have closed canopies of mostly native trees with thick understories composed of non-native, invasive species [7]. These two extremes of urban forest fragment types both face serious ecological problems (e.g. loss of native understory or reduced regeneration), with implications for tick-borne disease risk

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call