Abstract
As a fi rst step towards a new approach for the simulation of two-phase fl ows, the objective of this work is to check out the prediction of a model dedicated to large and distorted bubbles on twobubble coalescence cases. The multifi eld hybrid approach for two-phase fl ow modelling consists in dealing separately with the small and spherical bubbles, treated with a dispersed approach, and with the large and distorted ones, whose interface is located. The overall method relies also on an existing building block, consisting in a set of averaged models dedicated to dispersed bubbles, which has already been validated and has given a reasonable agreement with experimental data in cases where the spherical shape assumption is still valid for the dispersed phase. This paper aims to assess a conservative interface locating method based on level set adapted to two-fl uid model for two-phase fl ows. The interface locating method is a part of a model dedicated to the simulation of large and distorted bubbles. At different liquid viscosities and densities, the model provides reasonable predictions of terminal velocities and shapes for rising bubble experiments. The main outcome is the simulation of bubble coalescence where the distortion of the interface during the coalescence phenomenon is followed. The ability to simulate coalescence phenomena correctly is an important issue in the modelling of slug fl ows with interface locating methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Methods and Experimental Measurements
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.