Abstract

In the decoupling limit, the Dvali-Gabadadze-Porrati model reduces to the theory of a scalar field $\ensuremath{\pi}$, with interactions including a specific cubic self-interaction---the Galileon term. This term, and its quartic and quintic generalizations, can be thought of as arising from a probe 3-brane in a five-dimensional bulk with Lovelock terms on the brane and in the bulk. We study multifield generalizations of the Galileon and extend this probe-brane view to higher codimensions. We derive an extremely restrictive theory of multiple Galileon fields, interacting through a quartic term controlled by a single coupling, and trace its origin to the induced brane terms coming from Lovelock invariants in the higher codimension bulk. We explore some properties of this theory, finding de Sitter like self-accelerating solutions. These solutions have ghosts if and only if the flat space theory does not have ghosts. Finally, we prove a general nonrenormalization theorem: multifield Galileons are not renormalized quantum mechanically to any loop in perturbation theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.