Abstract

Multifidelity uncertainty quantification (MF UQ) sampling approaches have been shown to significantly reduce the variance of statistical estimators while preserving the bias of the highest-fidelity model, provided that the low-fidelity models are well correlated. However, maintaining a high level of correlation can be challenging, especially when models depend on different input uncertain parameters, which drastically reduces the correlation. Existing MF UQ approaches do not adequately address this issue. In this work, we propose a new sampling strategy that exploits a shared space to improve the correlation among models with dissimilar parameterization. We achieve this by transforming the original coordinates onto an auxiliary manifold using the adaptive basis (AB) method (Tipireddy and Ghanem, 2014). The AB method has two main benefits: (1) it provides an effective tool to identify the low-dimensional manifold on which each model can be represented, and (2) it enables easy transformation of polynomial chaos representations from high- to low-dimensional spaces. This latter feature is used to identify a shared manifold among models without requiring additional evaluations. We present two algorithmic flavors of the new estimator to cover different analysis scenarios, including those with legacy and non-legacy high-fidelity (HF) data. We provide numerical results for analytical examples, a direct field acoustic test, and a finite element model of a nuclear fuel assembly. For all examples, we compare the proposed strategy against both single-fidelity and MF estimators based on the original model parameterization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.