Abstract

Nanoscale, multifunctional, multiferroic materials possess strong magnetoelectric coupling (ME), open exciting multitudinous ways for designing future nanoelectronic and spintronic device applications. Bulk nanowires (100 nm), pure, and Tb-doped BiFeO3 multiferroic nanowires (20 nm) have been synthesized by colloidal dispersion template-assisted technique. The effects of Tb-doping and size of synthesized nanowires on structural, electrical, magnetic, dielectric, and magnetodielectric properties have been investigated. X-ray diffraction study reveals that doping of Tb in BiFeO3 nanowires leads to structural transformation from rhombohedral to orthorhombic. X-ray photoemission analysis confirms the +3 oxidation state of Fe and high purity of samples. Bulk nanowires exhibit antiferromagnetic characteristics, whereas the Tb-doped BiFeO3 nanowires show ferromagnetic character. Moreover, with increase in Tb concentration, the saturation magnetization increases. Temperature-dependent magnetization study suggests their size-dependent ferro and ferri-magnetic behavior. Polarization versus electric field (P–E) study reveals that pure BiFeO3 nanowires possess elliptical loop; however, doping of Tb results in rectangular loop— portentous good ferroelectric properties. All synthesized samples exhibit frequency-dependent dielectric constant which decreases with increase in frequency and remains fairly constant at higher frequencies. Leakage current density decreases with increase in Tb concentration, and has been found to be three orders of magnitude less than those of bulk BiFeO3 nanowires. The ME coupling in synthesized nanowires was estimated by measuring magnetodielectric. A very high value of ME, 7.2 %, has been found for 15 % Tb-doped BiFeO3 nanowires. In this communication, we, for the first time, report new cue on size-dependent Tb-doped BiFeO3 nanowires, which may be further used to explore its technological device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.