Abstract

Abstract The effects of Pr substitution on the structures, magnetism and electrical properties of Bi(Fe 0.95 Mn 0.05 )O 3 films are investigated systematically. X-ray diffraction and Raman spectra results confirm that a phase transition from rhombohedral to tetragonal structure occurs at about 15% Pr substitution. The X-ray photoelectron spectroscopy reveals that Fe 2+ in the films can be suppressed by Pr substitution. Enhanced ferromagnetism at room temperature is observed near the phase boundary composition. The increased remanent magnetization in the 15% Pr-substituted film can be understood by taking into account both the modification of the short-range canted G-type antiferromagnetic order at phase boundaries and the suppression of long-range incommensurate spin cycloid of BiFeO 3 due to Pr substitution. Meanwhile, large ferroelectric remanent polarization of un-doped BFO can be maintained when Pr concentration is less than 20%. With 15% Pr substitution, the film shows a large remanent polarization of 62 μC/cm 2 and a reduced coercive field of 217 kV/cm. These results demonstrate that doped BFO films with compositions near phase boundary may be promising candidates for multifunctional applications due to the simultaneous exhibition of enhanced ferromagnetism and superior ferroelectric properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.