Abstract

Neuromorphic computation is based on memristors, which function equivalently to neurons in brain structures. These memristors can be made more efficient and tailored to neuromorphic devices by using ferroelastic domain boundaries as fast diffusion paths for ionic conduction, such as of oxygen, sodium, or lithium. In this paper, we show that the local memristor generates a second, unexpected feature, namely, weak magnetic fields that emerge from moving ferroelastic needle domains and vortices. The vortices appear near ferroelastic “junctions” that are common when the external stimulus is a combination of electric fields and structural phase transitions. Many ferroelastic materials show such phase transitions near room temperatures so that device applications display a “multiferroic” scenario where the memristor is driven electrically and read magnetically. Our computer simulation study of an elastic spring model suggests magnetic fields in the order of 10−7 T, which opens the way for a fundamentally new way of running neuromorphic devices. The magnetism in such devices emerges entirely from intrinsic displacement currents and not from any intrinsic magnetism of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.