Abstract

Exploring novel two-dimensional multiferroic materials that can realize electric-field control of two-dimensional magnetism has become an emerging topic in spintronics. Using first-principles calculations, we demonstrate that non-metallic bilayer transition metal dichalcogenides (TMDs) can be an ideal platform for building multiferroics by intercalated magnetic atoms. Moreover, we unveil that with Co intercalated bilayer MoS2, Co(MoS2)2, two energetic degenerate states with opposite chirality of Dzyaloshinskii-Moriya interaction (DMI) are the ground states, indicating electric-field control of the chirality of topologic magnetism such as skyrmions can be realized in this type of materials by reversing the electric polarization. These findings pave the way for electric-field control of topological magnetism in two-dimensional multiferroics with intrinsic magnetoelectric coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call