Abstract

The aim of this work was to develop a system based on multifeature texture analysis and modular neural networks that will facilitate the automated interpretation of satellite cloud images. Such a system will provide a standardized and efficient way for classifying cloud types that can be used as an operational tool in weather analysis. A series of 98 infrared satellite images from the geostationary satellite METEOSAT7 were employed, and 366 cloud segments were labeled into six cloud types after combined agreed observations from ground and satellite. From the segmented cloud images, nine different texture feature sets (a total of 55 features) were extracted, using the following algorithms: statistical features, spatial gray-level dependence matrices, gray-level difference statistics, neighborhood gray tone difference matrix, statistical feature matrix, Laws' texture energy measures, fractals, and Fourier power spectrum. The neural network self-organizing feature map (SOFM) classifier and the statistical K-nearest neighbor (KNN) classifier were used for the classification of the cloud images. Furthermore, the classification results of the nine different feature sets were combined, improving the classification yield for the six classes, for the SOFM classifier to 61% and for the KNN classifier to 64%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.