Abstract

ABSTRACTRobust sea–land segmentation in optical remote-sensing images is challenging because of the complex sea–land environment and scene diversity. Here, we propose a novel multi-feature sea–land segmentation method via pixel-wise learning for optical remote-sensing images. Multiple features such as greyscale, local statistical information, edge, texture, and structure are first extracted from each pixel in training images and then used to learn a multi-feature sea–land classifier, which transforms the segmentation issue into pixel-wise binary classification problem. In our approach, a new multi-feature sea–land segmentation algorithm is put forward based on the approximation of Newton method. Experiments on Google-Earth, Venezuelan Remote Sensing Satellite-1 (VRSS-1) and Gaofen-1 images demonstrate that the proposed approach yields more robust and accurate sea–land segmentation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.