Abstract

Segmentation of ultrasound (US) images of breast cancer is one of the most challenging problems of the modern medical image processing. A number of popular codes for US segmentation are based on a generalized gradient vector flow (GGVF) method proposed by Xu and Prince. The GGVF equations include a smoothing term (diffusion) applied to regions of small gradients of the edge map and a stopping term to fix and extend large gradients appearing at the boundary of the object.The paper proposes two new directions. The first component is diffusion as a polynomial function of the intensity of the edge map. The second component is the orientation score of the vector field. The new features are integrated into the GGVF equations in the smoothing and the stopping term.The algorithms, having been tested by a set of ground truth images, show that the proposed techniques lead to a better convergence and better segmentation accuracy with the reference to conventional GGVF snakes. The adaptive multi-feature snake does not require any hand-tuning. However, it is as efficient as the standard GGVF with the parameters selected by the “brutal force approach”. Finally, proposed approach has been tested against recent modifications of GGVF, i.e. the Poisson gradient vector flow, the mixed noise vector flow and the convolution vector flow. The numerical tests employing 195 synthetic and 48 real ultrasound images show a tangible improvement in the accuracy of segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.