Abstract

Sea ice conditions are so heterogeneous, and the differences between the different ice types are less varied than that of land targets, so only using polarimetric or textural features would lead to misclassification of polarimetric synthetic aperture radar (PolSAR) data of sea ice. To support the identification of different ice types, the fusion of textural and polarimetric features would be a good solution. Simple discrimination analysis is used to rationalize a preferred features subset. Some features are analyzed, which include entropy H /alpha α /anisotropy A and three kinds of texture statistics (entropy, contrast, and correlation), in the C- and L-band polarimetric mode. After that, a multiobjective fuzzy decision model is proposed for supervised PolSAR data classification of sea ice, and the targets are categorized according to the principle of maximum membership grade. In consideration of the interference of the correlation among features, the model is based on Mahalanobis distance in which the covariances between the selected heterogeneous features could restrain the interference among redundant features. In the end, the effectiveness of the algorithm for PolSAR image classification of sea ice is demonstrated through the analysis of some experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.