Abstract

This article introduces an image classification approach in which the semantic context of images and multiple low-level visual features are jointly exploited. The context consists of a set of semantic terms defining the classes to be associated to unclassified images. Initially, a multiobjective optimization technique is used to define a multifeature fusion model for each semantic class. Then, a Bayesian learning procedure is applied to derive a context model representing relationships among semantic classes. Finally, this context model is used to infer object classes within images. Selected results from a comprehensive experimental evaluation are reported to show the effectiveness of the proposed approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.