Abstract

Bacillus subtilis K-5, an isolate from compost, utilized a wide range of keratinous wastes viz. diverse feather types, nails, hair, scales, etc. for growth and produced a thermostable alkaline protease (keratinase) with broad proteolytic activity. Optimization of cultural and environmental variables using a Plackett–Burman design and response surface methodology resulted in enhanced keratinase production (89%). Keratinase was partially purified (15-fold) by ammonium sulfate precipitation and carboxymethyl cellulose chromatography. The optimum pH and temperature for keratinase activity were 9.0 and 60°C, however, considerable activity and stability was observed over broad pH (5–10) and temperature range (50–90°C). B. subtilis K-5 keratinase exhibited excellent stability toward detergents (cetyl trimethylammonium bromide, Tween 80, and sodium dodecyl sulfate) and organic solvents (benzene, acetonitrile, phenylmethylsulfonyl fluoride); however, metal ions like Mn2+, Cu2+, Na+, Hg2+, K+, Ca2+, and Zn2+ inhibited the activity. B. subtilis K-5 protease showed remarkable potential for diverse applications like blood stain removal, gelatin hydrolysis from waste X-ray films and dehairing of animal hide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call