Abstract

ObjectiveRoutine haematoxylin and eosin (H&E) photomicrographs from human papillomavirus-associated oropharyngeal squamous cell carcinomas (HPV + OpSCC) contain a wealth of prognostic information. In this study, we developed a high content image analysis (HCIA) workflow to quantify features of H&E images from HPV + OpSCC patients to identify prognostic features and predict patient outcomes. MethodsFirst, we have developed an open-source HCIA tool for single-cell segmentation and classification of H&E images. Subsequently, we have used our HCIA tool to analyse a set of 889 images from diagnostic H&E slides in a retrospective cohort of HPV + OpSCC patients with favourable (FO, n = 60) or unfavourable (UO, n = 30) outcomes. We have identified and measured 31 prognostic features which were quantified in each sample and used to train a neural network (NN) model to predict patient outcomes. ResultsUnivariate and multivariate statistical analyses revealed significant differences between FO and UO patients in 31 and 17 variables, respectively (P < 0.05). At the single-image level, the NN model had an overall accuracy of 72.5% and 71.2% in recognising FO and UO patients when applied to test or validation sets, respectively. When considering 10 images per patient, the accuracy of the NN model increased to 86.7% in the test set. ConclusionOur open-source H&E analysis workflow and predictive models confirm previously reported prognostic features and identifies novel factors which predict HPV + OpSCC outcomes with promising accuracy. Our work supports the use of machine learning in digital pathology to exploit clinically relevant features in routine diagnostic pathology without additional biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call