Abstract

The structure-property linkage is one of the two most important relationships in materials science besides the process-structure linkage, especially for metals and polycrystalline alloys. The stochastic nature of microstructures begs for a robust approach to reliably address the linkage. As such, uncertainty quantification (UQ) plays an important role in this regard and cannot be ignored. To probe the structure-property linkage, many multi-scale integrated computational materials engineering (ICME) tools have been proposed and developed over the last decade to accelerate the material design process in the spirit of Material Genome Initiative (MGI), notably crystal plasticity finite element model (CPFEM) and phase-field simulations. Machine learning (ML) methods, including deep learning and physics-informed/-constrained approaches, can also be conveniently applied to approximate the computationally expensive ICME models, allowing one to efficiently navigate in both structure and property spaces effortlessly. Since UQ also plays a crucial role in verification and validation for both ICME and ML models, it is important to include UQ in the picture. In this paper, we summarize a few of our recent research efforts addressing UQ aspects of homogenized properties using CPFEM in a big picture context.KeywordsICMECPFEMUncertainty quantificationMachine learningMicrostructureMonte CarloMaterials variabilityPolynomial chaos expansionStochastic collocationDAKOTADREAM.3DDAMASK

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.