Abstract

Here, polypyrrole (PPY) was first used to the bioreduction of toxic selenite, while the acceleration effect and mechanism were explored. Experiment results suggested that PPY could enhance the selenite bioreduction from 0.42 to 1.04 mg/(L·h). The tests of electrochemical analysis and cytochrome c (cyt-c) content confirmed that PPY promoted the intracellular/intracellular electron transfer of Shewanella oneidensis·MR-1 in selenite bioreduction process. The enhancement of metabolic activity by PPY contributed to biological detoxification, which was manifested in the increased extracellular polymeric substances (EPS), adenosine triphosphate (ATP), electron transfer system activity (ETSA), membrane permeability and enzyme activity. Transcriptome analysis of DEGs, KEGG pathway enrichment and GO functional classification verified that the environmental adaptability of Shewanella oneidensis·MR-1 was enhanced with the addition of PPY. The transmission electron microscopy (TEM) images indicated that PPY promoted the biosynthesis of selenium nanoparticles (SeNPs), which was beneficial to reduce cell damage. Combined with the above results, a multifaceted synergistic facilitation mechanism based on “conductive cross-linking network” was elaborated from electron transfer, microbial metabolism and environmental adaptability. This study shed light the effect of conductive polymers (CPs) on selenite bioreduction and provided new insights into the bioremediation of toxic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call