Abstract

A unified synthetic strategy to access tertiary four-membered carbo/heterocyclic boronic esters is reported. Use of a Cu(I) catalyst in combination with a modified dppbz ligand enables regioselective hydroboration of various trisubstituted benzylidenecyclobutanes and carbo/heterocyclic analogs. The reaction conditions are mild, and the method tolerates a wide range of medicinally relevant heteroarenes. The protocol can be conveniently conducted on gram-scale, and the tertiary boronic ester products undergo facile diversification into valuable targets. Reaction kinetics and computational studies indicate that the migratory insertion step is turnover-limiting and accelerated by electron-withdrawing groups on the dppbz ligand. Energy decomposition analysis (EDA) calculations reveal that electron-deficient P-aryl groups on the dppbz ligand enhance the T-shaped π/π interactions with the substrate and stabilize the migratory insertion transition state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call