Abstract

Dairy cattle undergo dramatic metabolic, endocrine, physiologic and immune changes during the peripartal period largely due to combined increases in energy requirements for fetal growth and development, milk production, and decreased dry matter intake. The negative nutrient balance that develops results in body fat mobilization, subsequently leading to triacylglycerol (TAG) accumulation in the liver along with reductions in liver function, immune dysfunction and a state of inflammation and oxidative stress. Mobilization of muscle and gluconeogenesis are also enhanced, while intake of vitamins and minerals is decreased, contributing to metabolic and immune dysfunction and oxidative stress. Enhancing post-ruminal supply of methyl donors is one approach that may improve immunometabolism and production synergistically in peripartal cows. At the cellular level, methyl donors (e.g. methionine, choline, betaine and folic acid) interact through one-carbon metabolism to modulate metabolism, immune responses and epigenetic events. By modulating those pathways, methyl donors may help increase the export of very low-density lipoproteins to reduce liver TAG and contribute to antioxidant synthesis to alleviate oxidative stress. Thus, altering one-carbon metabolism through methyl donor supplementation is a viable option to modulate immunometabolism during the peripartal period. This review explores available data on the regulation of one-carbon metabolism pathways in dairy cows in the context of enzyme regulation, cellular sensors and signaling mechanisms that might respond to increased dietary supply of specific methyl donors. Effects of methyl donors beyond the one-carbon metabolism pathways, including production performance, immune cell function, mechanistic target or rapamycin signaling, and fatty acid oxidation will also be highlighted. Furthermore, the effects of body condition and feeding system (total mixed ration vs. pasture) on one-carbon metabolism pathways are explored. Potential effects of methyl donor supply during the pepartum period on dairy calf growth and development also are discussed. Lastly, practical nutritional recommendations related to methyl donor metabolism during the peripartal period are presented. Nutritional management during the peripartal period is a fertile area of research, hence, underscoring the importance for developing a systems understanding of the potential immunometabolic role that dietary methyl donors play during this period to promote health and performance.

Highlights

  • The peripartal period, i.e. the last 3 weeks prepartum through the first 3 weeks postpartum, is characterized by increased inflammation, oxidative stress, adipose tissue mobilization and greater risk of metabolic disorders partly due to reduced dry matter intake (DMI) [1, 2]

  • Besides the periconceptional period [12], given their unique functional roles, the impact of methyl donor nutrition clearly would be multifaceted during latepregnancy and early lactation, i.e. the peripartal period

  • We recently reported expression of various amino acid (AA) transporters, Protein kinase B (AKT) and mechanistic target of rapamycin (mTOR) in polymorphonuclear leukocytes (PMNL) isolated from whole blood

Read more

Summary

Introduction

The peripartal period, i.e. the last 3 weeks prepartum through the first 3 weeks postpartum, is characterized by increased inflammation, oxidative stress, adipose tissue mobilization and greater risk of metabolic disorders (e.g. ketosis, fatty liver, milk fever) partly due to reduced dry matter intake (DMI) [1, 2]. The unique impact of this pathway in dairy cattle stems from its potential role in embryo development [7], placental function [8], neonatal growth [9], and immunometabolic benefits on the cow [10, 11] during latepregnancy and early lactation. Besides the periconceptional period (i.e. period from oocyte maturation through early embryo development) [12], given their unique functional roles, the impact of methyl donor nutrition clearly would be multifaceted during latepregnancy and early lactation, i.e. the peripartal period. Most research on peripartal cows over the last 2–3 decades has explored these biological interactions to identify mechanisms behind the immunometabolic adaptations that occur, underscoring the need to develop a systemic understanding of the potential immunometabolic role that dietary methyl donors may play during this period

Objectives
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.