Abstract

Average climatic events describe the occurrence of weather or climate at an average value, whereas extreme events are defined as events that exceed the upper or lower threshold value of statistical or observational average climatic events. This study investigated the impacts of both average climate change (ACC) (i.e., average precipitation, temperature, and potential evapotranspiration [PET]) and extreme climate change (ECC) (i.e., five precipitation and five temperature extremes) on dryland vegetation based on the Normalized Difference Vegetation Index (NDVI). The spatial divergences of ACC and ECC in affecting changes in NDVI over drylands were determined using the geographical detector model. In this study, the growth of vegetation in 40.29 % of global drylands was driven by average precipitation and this dominant effect also occurred in all the plant species, particularly shrubs. However, the sensitivity of grassland to average precipitation exceeded that of most of the woody vegetation. The average temperature and PET controlled 28.64 % and 31.07 % of the changes in NDVI, respectively. Precipitation extremes (except for consecutive dry days and consecutive wet days) and warm temperature extremes (WTE) had positive influences on dryland vegetation, and the effect of WTE on NDVI exceeded that of the remaining temperature extremes. Temperature extremes exerted more significant effects than precipitation extremes for changes in the grassland NDVI. In contrast, the variations in shrub NDVI were primarily dominated by precipitation extremes. We also found that the impacts of parts of average and extreme climatic factors on vegetation had changed over time. Furthermore, temperature extremes had far exceeded the average temperature in affecting vegetation growth at the spatial scale, and this action gradually intensified from 1982 to 2015. The influences of all precipitation extremes were weaker than those of the average precipitation. Those can offer scientific references for ecosystem protection in drylands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.