Abstract
Perumal et al. (2017) compared the performances of the variable parameter McCarthy-Muskingum (VPMM) model of Perumal and Price (2013) and the nonlinear Muskingum (NLM) model of Gill (1978) using hypothetical inflow hydrographs in an artificial channel. As input parameters, first model needs the initial condition, upstream boundary condition, Manning’s roughness coefficient, length of the routing reach, cross-sections of the river reach and the bed slope, while the latter one requires the initial condition, upstream boundary condition and the hydrologic parameters (three parameters which can be calibrated using flood hydrographs of the upstream and downstream sections). The VPMM model was examined by available Manning’s roughness values, whereas the NLM model was tested in both calibration and validation steps. As final conclusion, Perumal et al. (2017) claimed that the NLM model should be retired from the literature of the Muskingum model. While the author’s intention is laudable, this comment examines some important issues in the subject matter of the original study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.