Abstract

In this paper, we describe a user-centered design of an automated multifaceted concept-based indexing framework which analyzes the semantics of the Web image contextual information and classifies it into five broad semantic concept facets: signal, object, abstract, scene, and relational; and identifies the semantic relationships between the concepts. An important aspect of our indexing model is that it relates to the users’ levels of image descriptions. Also, a major contribution relies on the fact that the classification is performed automatically with the raw image contextual information extracted from any general webpage and is not solely based on image tags like state-of-the-art solutions. Human Language Technology techniques and an external knowledge base are used to analyze the information both syntactically and semantically. Experimental results on a human-annotated Web image collection and corresponding contextual information indicate that our method outperforms empirical frameworks employing tf–idf and location-based tf–idf weighting schemes as well as n-gram indexing in a recall/precision based evaluation framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.