Abstract

To improve student science achievement in the United States we need inquiry-based instruction that promotes coherent understanding and assessments that are aligned with the instruction. Instead, current textbooks often offer fragmented ideas and most assessments only tap recall of details. In this study we implemented 10 inquiry-based science units that promote knowledge integration and developed assessments that measure student knowledge integration abilities. To measure student learning outcomes, we designed a science assessment consisting of both proximal items that are related to the units and distal items that are published from standardized tests (e.g., Trends in International Mathematics and Science Study). We compared the psychometric properties and instructional sensitivity of the proximal and distal items. To unveil the context of learning, we examined how student, class, and teacher characteristics affect student inquiry science learning. Several teacher-level characteristics including professional development showed a positive impact on science performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.