Abstract

Deoxyribonucleic acid (DNA) capped silver nanoparticles are exceptional nanomaterials, featuring precise size and shape control enabled by DNA as a capping agent. DNA stabilizes these nanoparticles' role leading to uniform structures for diverse applications. These nanoparticles are excellent in photonics and medical applications, enhancing fluorescence and medical imaging. In this study, we explore the multifaceted applications of DNA-capped silver nanoparticles, delving into their optical, photocatalytic, antibacterial, cytotoxic, and bioimaging properties. Employing UV-visible absorption spectroscopy and scanning electron microscopy, we provide an analysis of confirmation of silver nanoparticles. The investigation demonstrates substantial photocatalytic efficacy, photodegradation of methylene blue is higher than rhodamine 6G. The presence of silver nanoparticles enhances the fluorescence of rhodamine 6G doped sol-gel glasses. Furthermore, our findings illustrate significant antibacterial effects, encompassing both Gram-positive and Gram-negative bacteria, with DNA-capped silver nanoparticles exhibiting antibacterial activity. Cytotoxicity assessments on HeLa cells reveal concentration-dependent effects, with an LC50 value of 47 µL. Additionally, thein vitro experiments with HeLa cells suggest the promising utility of DNA-capped silver nanoparticles for bioimaging applications. This comprehensive analysis highlights the multifunctionality and potential of DNA-capped silver nanoparticles, offering promising avenues for further exploration and innovation within various scientific domains, particularly in the realm of nanomaterial research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call