Abstract

This paper presents a surrogate modelling technique based on domain partitioning for Bayesian parameter inference of highly nonlinear engineering models. In order to alleviate the computational burden typically involved in Bayesian inference applications, a multielement Polynomial Chaos Expansion based Kriging metamodel is proposed. The developed surrogate model combines in a piecewise function an array of local Polynomial Chaos based Kriging metamodels constructed on a finite set of non-overlapping subdomains of the stochastic input space. Therewith, the presence of non-smoothness in the response of the forward model (e.g. nonlinearities and sparseness) can be reproduced by the proposed metamodel with minimum computational costs owing to its local adaptation capabilities. The model parameter inference is conducted through a Markov chain Monte Carlo approach comprising adaptive exploration and delayed rejection. The efficiency and accuracy of the proposed approach are validated through two case studies, including an analytical benchmark and a numerical case study. The latter relates the partial differential equation governing the hydrogen diffusion phenomenon of metallic materials in Thermal Desorption Spectroscopy tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.