Abstract

A method for multielement analysis of micro-volume biological sample by inductively coupled plasma mass spectrometry (ICP-MS) with a highly efficient sample introduction system was presented. The sample introduction system was the combination of (1) an inert loop injection unit and (2) a high performance concentric nebulizer (HPCN) coupled with a temperature controllable cyclone chamber. The loop injection unit could introduce 20μL samples into the carrier liquid flow of 10μLmin−1 producing a stable signal for 100s without any dilution. The injection loop is continuously washed with 0.1M HNO3 carrier solution during the measurement, thereby much improving sample throughput. The HPCN is a triple tube concentric nebulizer, which can generate fine aerosols and provide a stable and highly measurement sensitivity in ICP-MS at a liquid flow rate less than 10μLmin−1. With the combination of the chamber heating at 60°C, the sensitivity obtained with the proposed sample introduction system at the liquid flow rate of 10μLmin−1 was almost the same as that with a common concentric nebulizer and cyclone chamber system at the liquid flow rate of 1mLmin−1, though the sample consumption rate of the HPCN was two orders of the magnitude lower than that of the common nebulizer. The validation of the proposed system was performed by analyzing the NIST SRM 1577b Bovine Liver. The observed values for 12 elements such as Na, P, S, K, Ca, Mn, Fe, Co, Cu, Zn, Mo, Cd were in good agreement with their certified values and information value. Satisfactory analytical results for 14 elements such as Na, Mg, P, S, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Y, Ba in Escherichia coli sample were also obtained. The proposed sample introduction system was quite effective in the cases when only micro-volume of biological sample is available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.