Abstract

In electrostatic charged particle lens design, optimization of a multi-electrode lens with many free optimization parameters is still quite a challenge. A fully automated optimization routine is not yet available, mainly because the lens potential calculations are often done with very time-consuming methods that require meshing of the lens space. A new method is proposed that improves on the low speed of the potential calculation while keeping the high accuracy of the mesh-based calculation methods. This is done by first using a fast potential calculation based on the so-called Second-Order Electrode Method (SOEM), at the cost of losing some accuracy, and then using a Genetic Algorithm (GA) for the optimization. Then, by using the parameters of the approximate systems found from this optimization based on SOEM, an accurate GA optimization routine is performed based on potential calculation with the commercial finite element package COMSOL. A six-electrode electrostatic lens was optimized accurately within a few hours, using all lens dimensions and electrode voltages as free parameters and the focus position and maximum allowable electric fields between electrodes as constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.