Abstract

Using a physiologically based model of brain activity, electroencephalogram (EEG) power spectra are calculated for signals derived from general linear combinations of voltages from multiple electrodes, with and without filtering by volume conduction. Two simple methods of combining scalp measurements to estimate unfiltered EEG power spectra are then proposed and their accuracy and robustness are explored, using the model predictions as an illustration. It is found that these methods, including a case that uses just three electrodes, enable improved estimation of the underlying spectrum relative to each of several widely used combinations alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call