Abstract

Summary form only give. Pulsed corona offers a real promise for degradation of pollutants in gas and water streams. This paper presents a study of NO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</sub> removal from diesel exhaust. Special emphasis is placed on the investigation of the dependence of the NO removal rate and efficiency on the pulse repetition rate (PRR). A nanosecond solid state power supply (45 kV, 60 ns, up to 1 kHz) was used for driving the corona multielectrode reactor [Pokryvailo, A., et al., 2004]. Experiments related to the matching between the solid state power supply and corona reactor were carried out before the exhaust treatment. A Mitsubishi 10-kW 3-cylinder diesel-generator engine with a total volume of 1300 cc was used as a source of the exhaust gas. At an NO removal rate of 35% the NO removal efficiency was 53 g/kWh for PRR = 500 Hz and the initial NO concentration was 375 ppm. Experiments show that NO removal rate increases with the increase of the pulse voltage. Similar results were demonstrated by the authors of [Shimomura, N., et al., 2006]. A semi-empirical expression for the corona reactor removal efficiency related both to PRR and to the residence time is presented. The removal efficiency decreases with increasing PRR at a constant flow rate or constant residence time. This expression demonstrates a reasonable agreement between calculation results and experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.