Abstract

In the most general case, all three components—the discrete eigenvalues, the discrete spectral amplitudes, and the continuous spectrum—of the nonlinear Fourier transform of a signal can be independently modulated. This paper examines information transmission using only the discrete eigenvalues, and presents heuristic designs for multisoliton signal sets with spectral efficiencies greater than 3 b/s/Hz. The first design, called multieigenvalue position encoding, is based on an exhaustive search followed by pruning of the signal set to remove high pulsewidth or high bandwidth outliers. The second design, called trellis encoding, achieves comparable efficiencies to the fist method at much lower complexity. These multisoliton signals do not undergo any pulse broadening, but are significantly limited by bandwidth expansion if the system length is not much smaller than the dispersion length parameter. This limitation suggests that modulating the eigenvalues alone cannot address the problem of nonlinearity in commercial fiber transmission systems, and that our proposed methods are only meaningful when dispersion is very small and dominated by nonlinearity, e.g., close to the zero-dispersion wavelength at 1300 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.