Abstract

BackgroundTuberculosis (TB) control is a primary global health priority but the goal to eliminate TB is being threatened by the increase in incidence of multidrug-resistant tuberculosis (MDR-TB). With this series of seven MDR-TB cases in migrant patients with identical Mycobacterium tuberculosis strains we aim to illustrate the challenges encountered during therapy and follow-up: language barriers, access to care for migrant patients, depression due to isolation, adverse reactions to the treatment, management of pediatric TB, further contact tracing. We also discuss best practices for the management of complex MDR-TB cases in settings with low overall TB incidence focusing on modern diagnostic assays and an individualized and an interdisciplinary therapeutic approach.MethodsWe describe a case series of seven consecutively diagnosed MDR-TB patients, six of them treated at our tertiary care hospital between May 2018 and March 2020. Epidemiologic data was gained by semi-structured patient interviews and reconstruction of the migration route. The origin of the cluster was confirmed by genotyping of the TB-strains.ResultsSix related patients were diagnosed with pulmonary MDR-TB between May and August 2018. All had a positive Interferon-Gamma-Release Assay (IGRA), in five patients sputum microscopy was positive for acid-fast bacilli (AFB). The genetic and phenotypical drug susceptibility test did not match with MDR-TB strains from an East-African origin. The index patient was identified through genetical fingerprinting. By changing the therapy to a modern MDR-TB regime and using an interdisciplinary and culture-sensitive approach, all patients improved clinically and radiologically.ConclusionHuman migration plays an important role for the global spread of MDR-TB in low incidence countries. Early case detection and adequate treatment are key to prevention of outbreaks. Especially language barriers and complex migration routes make genotyping of TB-strains a crucial tool to identify cases clusters, the potential index patient and transmission dynamics. We are fortunate enough to experience times in which new TB-antibiotics were made available and in which molecular assays revolutionized TB-diagnostics. We need to take advantage of that and develop personalized therapies for patients suffering from drug resistant TB.

Highlights

  • Tuberculosis (TB) control is a primary global health priority but the goal to eliminate TB is being threatened by the increase in incidence of multidrug-resistant tuberculosis (MDR-TB)

  • Epidemiological methods/contact tracing After diagnosing MDR-TB in two migrant patients that were infected with a M. tuberculosis strain resistant to isoniazid (INH), rifampicin (RMP), ethambutol (EMB), pyrazinamide (PZA), ethionamid (ETO) and moxifloxacin, a case series investigation was initiated

  • Microbiological data and genome-based molecular surveillance of TB Six patients from two related migrant families originating from Sudan were diagnosed with MDR-TB caused by a Mycobacterium tuberculosis complex (MTBC) strain showing a complex pattern of phenotypic resistance and resistance associated mutations for isoniazide (INH), rifampicin (RMP), ethambutol (EMB), pyrazinamide (PZA), ethionamid (ETO) and low-dose fluorochinolones - a strain that had never been diagnosed in Germany in patients originating from East Africa (Table 1)

Read more

Summary

Introduction

Tuberculosis (TB) control is a primary global health priority but the goal to eliminate TB is being threatened by the increase in incidence of multidrug-resistant tuberculosis (MDR-TB) With this series of seven MDRTB cases in migrant patients with identical Mycobacterium tuberculosis strains we aim to illustrate the challenges encountered during therapy and follow-up: language barriers, access to care for migrant patients, depression due to isolation, adverse reactions to the treatment, management of pediatric TB, further contact tracing. Notified TB case numbers are comparably low in North American and Western European nations and typically range below 25 per 100,000 people [6] In these settings, previous TB treatment and a foreign-born status are the strongest risk factors for MDR-TB [7, 8]. Frequent relocation as well as language and cultural barriers pose significant challenges for contact tracing in migrant populations [9,10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call