Abstract

Simple SummaryIncreasing antimicrobial resistance is a global problem for both human and animal health. Escherichia coli is frequently used as a “sentinel” for antimicrobial resistance and as an indicator of faecal contamination of the environment. This study is a characterisation of the antimicrobial resistance phenotypes of E. coli isolates obtained from cloacal samples of Canarian Egyptian vultures. A total of 65 chickens and 38 adult and immature birds were studied. Antimicrobial susceptibility to 16 antibiotics of 12 different categories was determined in 103 E. coli isolates. We found a 39.8% prevalence of multidrug-resistant (MDR) E. coli. Almost all MDR phenotypes found included resistance to tetracycline, an antibiotic widely used in veterinary medicine. Resistance has also been found to chloramphenicol (13 MDR phenotypes), imipenem (5 MDR phenotypes) and others. Wild birds can act as reservoirs and disseminators of MDR E. coli, transferring them via faeces to the environment, feed or water. Our results highlight the need to minimise exposure of wild birds to antimicrobials from human activities to avoid the spread of antimicrobial resistance.The presence of multidrug-resistant (MDR) Escherichia coli in cloacal samples from Canarian Egyptian vultures was investigated. Samples were obtained from chicks (n = 65) and from adults and immature birds (n = 38). Antimicrobial susceptibility to 16 antibiotics included in 12 different categories was determined for 103 E. coli isolates. MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories. Forty-seven different resistance phenotypes were detected: 31 MDR (41 isolates) and 16 non-MDR (62 isolates). One isolate was resistant to all 12 antimicrobial categories and 2 phenotypes included resistance to 9 antimicrobial categories. Imipenem resistance was included in five MDR phenotypes, corresponding to five different isolates. Statistically significant differences in prevalence of MDR-phenotypes were found between chicks in nests and the rest of the animals, probably due to the shorter exposure time of chicks to antimicrobials. The main risk derived from MDR bacteria in scavengers is that it threatens the treatment of wild animals in rescue centres and could be transferred to other animals in the facilities. In addition to this, it could pose a health risk to veterinarians or other staff involved in wildlife protection programmes.

Highlights

  • The increase of antimicrobial resistance is a global problem for both human and animal health [1,2]

  • This supports the possibility of transmission of resistant bacteria between human, livestock and domestic animals, wildlife and the environment, as well as the possible selective pressure exerted by antibiotic residues present in the environment [10,11,12,13,14]

  • The aim of our work was the analysis of MDR-phenotypes in E. coli isolated from a bird-of-prey endemic to the Canary Islands (Spain): the Canarian Egyptian vulture (Neophron percnopterus majorensis), included in the Spanish Catalogue of Threatened Species under the category

Read more

Summary

Introduction

The increase of antimicrobial resistance is a global problem for both human and animal health [1,2]. Antimicrobial resistance has been detected in many wildlife species on all continents, including Antarctica and the Arctic [3,4,5,6,7,8,9], even when wildlife are not treated with these compounds. This supports the possibility of transmission of resistant bacteria between human, livestock and domestic animals, wildlife and the environment, as well as the possible selective pressure exerted by antibiotic residues present in the environment [10,11,12,13,14].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call