Abstract
Halobenzoquinones (HBQs) are frequently detected disinfection byproducts (DBPs) in treated water. Recent studies have demonstrated that HBQs are highly cytotoxic and capable of inducing the generation of reactive oxygen species (ROS) and depleting cellular glutathione (GSH). Multidrug resistance proteins (MRPs/ABCCs) are known to play a critical role in the elimination of numerous drugs, carcinogens, toxicants, and their conjugated metabolites. In general, little is known about the roles of transporters in DBP toxicity. Here, we hypothesize that MRPs may play roles in the detoxication of HBQs. To test this hypothesis, we used human embryonic kidney 293 (HEK293) cells stably expressing MRPs (MRP1, 3, 4, and 5) and HEK293 cells with empty vector (HEK-V) to examine the comparative cytotoxicity of four HBQs: 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), and 2,3,6-trichloro-1,4-benzoquinone (TriCBQ). The cytotoxicity (IC50) of the four HBQs in HEK-MRP1, -MRP3, -MRP4, and -MRP5 cells and the control HEK-V cells clearly showed that MRP4 had the most significant effect on reducing the toxicity of the four HBQs. To further support MRP4-mediated detoxication of HBQs, we examined the HBQ-induced ROS levels in HEK-MRP4 and HEK-V cells. ROS levels were significantly reduced in HEK-MRP4 cells compared with HEK-V cells after HBQ treatment. Furthermore, it was found that MRP4-mediated detoxication of the HBQs was GSH dependent, as the cytotoxicity of the HBQs was increased in GSH-depleted HEK-MRP4 cells in comparison to HEK-MRP4 cells. The GSH-dependent protection of cells from HBQs supports the possibility of HBQ-GSH conjugate efflux by MRP4. This study demonstrates a role for MRP4 in cellular protection against HBQ DBP-induced toxicity and oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.