Abstract
A variety of cationic lipophilic compounds (modulators) have been found to reverse the multidrug resistance of cancer cells. In order to determine the membrane perturbing efficacy and the binding affinity of such drugs in neutral and anionic liposomes, the leakage of Sulfan blue induced by five modulators bearing different electric charges was quantified using liposomes with and without phosphatidic acid (xEPA=0 and 0.1), at four lipid concentrations. The binding isotherms were drawn up using the indirect method based on the dependency of the leakage rate on the modulator and the lipid concentrations. Upon inclusion of negatively charged lipids in the liposomes: (i) the binding of cationic drugs was favoured, except in a case where modulator aggregation occurred in the lipid phase; (ii) the drugs with a net electric charge greater than 1.1 displayed a greater enhancement in their potency to produce membrane perturbation; and (iii) the EPA effect on membrane permeation was due mainly to that on membrane perturbation (>or=50%) and, to a lesser extent, to that on the binding affinity (<or=50%). The present study provides evidence that drug-membrane interactions are the result of a complex interplay between the structural and electrical characteristics of the drugs and those of the membranes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.