Abstract

ObjectiveMultidrug resistance (MDR) and extended spectrum beta lactamase (ESBL) producer Gram negative bacteria are considered as a major health problem, globally. ESBL enzyme hydrolyses the beta lactam ring of third generation cephalosporins, which alters the structure of the antibiotic. Due to the modification in structure of the antibiotic, bacteria show resistance to these antibiotics. Resistant bacterial strains are transmitted to humans from animals through consumption of uncooked meat, through contact with uncooked meat and meat surfaces. This study aims to assess bacteriological profile and analyze the situation of antibiotic resistance, multidrug resistance, and ESBL producing Gram negative bacteria in chicken meat.ResultsA total of 38 chicken meat samples were studied in which 103 Gram negative bacteria were isolated. Species of Gram negative bacteria were identified as Citrobacter spp. (44.7%), Salmonella spp. (26.2%), Proteus spp. (18.4%), Escherichia coli (4.8%), Shigella spp. (3.9%), Pseudomonas spp. (1.9%), and Klebsiella spp. (1.0%). The prevalence of MDR isolates was found to be 79.6%. Total ESBL producer was 36.9% and ESBL producer among MDR was 34.9%. This concludes wide range of antibiotic resistance bacteria is prevalent in raw chicken meat.

Highlights

  • Multidrug resistance (MDR) is the ability of bacteria to resist different classes of antibiotics which are structurally different and have different molecular targets [1]

  • A total of 38 chicken meat samples were studied in which 103 Gram negative bacteria were isolated

  • Species of Gram negative bacteria were identified as Citrobacter spp. (44.7%), Salmonella spp. (26.2%), Proteus spp. (18.4%), Escherichia coli (4.8%), Shigella spp. (3.9%), Pseudomonas spp. (1.9%), and Klebsiella spp. (1.0%)

Read more

Summary

Introduction

Multidrug resistance (MDR) is the ability of bacteria to resist different classes of antibiotics (three or more than three classes of antibiotics) which are structurally different and have different molecular targets [1]. Antibiotic resistance is a result of antibiotic use. The greater the volume of antibiotics used, the greater will be the chances of arising antibiotic resistance population of bacteria [2]. There is growing evidence which revealed antibiotic resistance has been promoted by widespread use of non-therapeutic antibiotics in animals [3]. The prevalence of MDR isolates and ESBL producing isolates is increasing in humans as well as animal. Bacterial species that carry ESBL genes are normal inhabitants of gastrointestinal tract, and food is a potential source of them [5]. Meat harbor different bacteria as an inherent contamination and are further contaminated during handling, improper

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.