Abstract

Background. Diarrheagenic E. coli (DEC) is an etiological agent of childhood diarrhea. Resistance against commonly used drugs in the empirical treatment of enteric infections has increased among DEC. Relationship between antibiotic resistance and biofilm formation in microorganisms have been widely reported. This study was aimed to determine the antibiotic resistance and biofilm production pattern among DEC pathotypes isolated from stools of children aged 0–5 years with acute diarrheal disease in Abakaliki, Nigeria. Materials and methods. Diarrheal stool samples were obtained from 60 children and E. coli were isolated and identified using standard guidelines provided for laboratory diagnosis of enteric pathogens. Molecular identification was done by amplification of E. coli universal stress protein A (uspA) using polymerase chain reaction (PCR) method. Detection of virulent genes of DEC pathotypes was performed in a group of multiplex PCR using their specific primers. Kirby–Bauer disk diffusion method was used to determine the antibiotic susceptibility patterns of the isolates while biofilms production was detected by thiazolyl blue tetrazolium bromide dye in a 96-well plate. Results. DEC was isolated in 40 stools among which EIEC [40% (n = 16)] was commonly detected followed by ETEC [30% (n = 12)], EAEC [20% (n = 8)] and typical EPEC [10% (n = 4)]. Half of EAEC showed the highest multidrug resistance against ampicillin, cefoxitin, ciprofloxacin, levofloxacin, and tetracycline with the strongest biofilm production followed by all the EPEC which were resistant to ampicillin, ciprofloxacin, levofloxacin, and tetracycline with moderate biofilm production. All the LT-ETEC exhibited the least resistance to ampicillin and tetracycline with the weakest biofilm production. Conclusion. High frequency of the EIEC pathotype suggests its role as the primary etiological agent of diarrhea in children. Correlation between high drug resistance and biofilm production among the pathotype may indicate that biofilms may provide compatible uptake of resistance genes.

Highlights

  • Diarrhea is characterized by the passage of watery stools at least two-three times in a 24 h period as a result of gastrointestinal infection majorly caused by a variety of bacterial, viral and parasitic pathogens

  • diarrheagenic E. coli (DEC) is divided into enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC) and diffusely adherent E. coli (DAEC)

  • Virulent eltA gene for stable toxins (ST)-ETEC was detected in 20% (n = 8) of the isoates while 10% (n = 4) expressed eltB for labile toxin (LT)-ETEC

Read more

Summary

Introduction

Diarrhea is characterized by the passage of watery stools at least two-three times in a 24 h period as a result of gastrointestinal infection majorly caused by a variety of bacterial, viral and parasitic pathogens. E. coli strains form surface communities of biofilm structure that contributes to resistance to different antimicrobial agents and to its pathogenicity. This study was aimed to determine the antibiotic resistance and biofilm production pattern among DEC pathotypes isolated from stools of children aged 0–5 years with acute diarrheal disease in Abakaliki, Nigeria. Diarrheal stool samples were obtained from 60 children and E. coli were isolated and identified using standard guidelines provided for laboratory diagnosis of enteric pathogens. Kirby–Bauer disk diffusion method was used to determine the antibiotic susceptibility patterns of the isolates while biofilms production was detected by thiazolyl blue tetrazolium bromide dye in a 96-well plate. DEC was isolated in 40 stools among which EIEC [40% (n = 16)] was commonly detected followed by ETEC [30% (n = 12)], EAEC [20% (n = 8)] and typical EPEC [10% (n = 4)]. Correlation between high drug resistance and biofilm production among the pathotype may indicate that biofilms may provide compatible uptake of resistance genes

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.