Abstract

Control of physiological states such as mean arterial pressure (MAP) has been successfully achieved using single drug by different control algorithms. Multi-drug delivery demonstrates a significantly challenging task as compared to control with a single-drug. Also the patient’s sensitivity to the drugs varies from patient to patient. Therefore, the implementation of adaptive controller is very essential to improve the patient care in order to reduce the workload of healthcare staff and costs. This paper presents the design and implementation of the model reference adaptive controller (MRAC) to regulate mean arterial pressure and cardiac output by administering vasoactive and inotropic drugs that are sodium nitroprusside (SNP) and dopamine (DPM) respectively. The proposed adaptive control model has been implemented, tested and verified to demonstrate its merits and capabilities as compared to the existing research work.KeywordsMean Arterial PressureBlood Pressure ControlSodium NitroprussideInternal Model ControlModel Reference Adaptive ControlThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.