Abstract

Multidrug efflux mechanisms in bacteria contribute significantly to intrinsic and acquired resistance to antimicrobial agents. Genome analysis have confirmed the broad distribution of these systems in Gramnegative as well as in Gram-positive bacteria. Among resistance mechanisms, the multidrug efflux system or pump deserves special attention, since a cell that has acquired it can simultaneously diminish or even suppress the susceptibility to a wide range of antimicrobials. The efflux system is mediated by transport proteins which confer resistance to toxic compounds. In Gram-negative bacteria, a tripartite efflux system is necessary to expel the drug to the outer medium: a protein localized in the cytoplasmic membrane; another in the periplasmatic space (membrane fusion protein – MFP); and a third in the outer membrane (outer membrane factor – OMF). The drug transport is active, and depends either on the energy provided by ATP hydrolysis or is directly driven by the proton motive force. The transport proteins are grouped in families, according to the homology of the amino acid sequences and to similarity of mechanisms. Among Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa have most of the hitherto identified and studied multidrug efflux systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.