Abstract
Broad new families of rational form variable separation solutions with two arbitrary lower-dimensional functions of the (2 + 1)-dimensional Broer-Kaup system with variable coefficients are derived by means of an improved mapping approach and a variable separation hypothesis. Based on the derived variable separation excitation, some new special types of localized solutions such as rouge wave, multidromion soliton, and soliton vanish phenomenon are revealed by selecting appropriate functions of the general variable separation solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.