Abstract

This research introduces a multidomain topology optimization algorithm for crashworthy structure undergoing large deformations. This technique makes use of the hybrid cellular automaton framework, which combines transient, non-linear finite-element analysis and local control rules acting on cells. The set of all cells defines the multidomains. Each subdomain has been defined by different material update rules according to specify constraint, and optimization iteration of each subdomain has been converged respectively during the optimal design process. The effectiveness of this technique is demonstrated through the design of a bumper-like structure. Result show that the new algorithm is suitable for practical applications. The case study presented demonstrates the potential significance of this work for a wide range of engineering design problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.