Abstract

The dynamic characteristics of rotors supported by Gas Foil Bearings (GFBs) are commonly assessed using linear force coefficients, which are usually derived from an analytical perturbation in combination with an implicit compliance model. This remains common practice even though discrepancies have been reported between the Onset Speed of Instability (OSI) predicted using such linear coefficients and observations from non-linear time integration. For the first time, the present paper pinpoints the root cause of this discrepancy by demonstrating an extended perturbation, akin to that used for tilting pad journal bearings, to predict exactly the same OSIs as obtained from an eigenvalue analysis based on the Jacobian of the full non-linear system of equations. To demonstrate this, the OSIs predicted using (i) the classical perturbation, (ii) the extended perturbation, and (iii) the Jacobian eigenvalues are compared over a range of compliance levels covering essentially rigid bearings to modern heavily loaded industrial GFBs. Using carefully aligned implementations, the deficiency of the classical method is demonstrated to increase with the compliance level (up to 13% for the benchmark case), while the extended perturbation provides OSIs in agreement with the Jacobian eigenvalues for all compliance levels. Furthermore, the mode shapes attainable from the three approaches, encompassing only the rotor, the rotor and foil, and the rotor, foil and pressure respectively, are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.