Abstract

The combination of different aerodynamic configurations and propulsion systems, namely, aero-propulsion, affects flight performance differently. These effects are closely related to multidisciplinary collaborative aspects (aerodynamic configuration, propulsion, energy, control systems, etc.) and determine the overall energy consumption of an aircraft. The potential benefits of distributed propulsion (DP) involve propulsive efficiency, energy-saving, and emissions reduction. In particular, wake filling is maximized when the trailing edge of a blended wing body (BWB) is fully covered by propulsion systems that employ boundary layer ingestion (BLI). Nonetheless, the thrust–drag imbalance that frequently arises at the trailing edge, excessive energy consumption, and flow distortions during propulsion remain unsolved challenges. These after-effects imply the complexity of DP systems in multidisciplinary optimization (MDO). To coordinate the different functions of the aero-propulsive configuration, the application of MDO is essential for intellectualized modulate layout, thrust manipulation, and energy efficiency. This paper presents the research challenges of ultra-high-dimensional optimization objectives and design variables in the current literature in aerodynamic configuration integrated DP. The benefits and defects of various coupled conditions and feasible proposals have been listed. Contemporary advanced energy systems, propulsion control, and influential technologies that are energy-saving are discussed. Based on the proposed technical benchmarks and the algorithm of MDO, the propulsive configuration that might affect energy efficiency is summarized. Moreover, suggestions are drawn for forthcoming exploitation and studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.