Abstract
The optimization design of chassis integrated system mainly involves steering, suspension and brake subsystems, which is essentially a multidisciplinary design optimization. This paper mainly researches the multidisciplinary optimization of the chassis integrated system for the electric wheel vehicle, from the view of ensuring a favorable feel for the driver. The dynamic models of differential steering system, brake system, active suspension system and vehicle are established. Then, taking the coupling relationship of the chassis subsystems into account, this paper proposes an evaluating index of driver’s ride comfort (Drc), which is composed of the steering road feel, brake feel and suspension ride comfort. In order to determine the weight coefficient in the quantization formula of Drc, the technique for order preference by similarity to ideal solution (TOPSIS) method is used to overcome the subjectivity in the selection. Based on these, a multidisciplinary hybrid hierarchical collaborative optimization (HHCO) method is proposed on the basis of the collaborative optimization (CO), which consists of a system level coordinator and a coupling analyzer to solve the problem of poor convergence and the low efficiency of CO method. The optimization results show that the proposed HHCO method has excellent computational efficiency and better convergence compared with the CO method, which can further improve the steering road feel and the drive ride comfort, on the premise of ensuring the brake feel and suspension ride comfort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.