Abstract

The dispersion of nickel catalysts is crucial for the catalytic ability of CO2 methanation, which can be influenced by the fabrication method and the operation process of the catalysts. Therefore, a series of fabrication methods, including ultrasonic, hydrothermal, microwave, and co-precipitation, have been applied to prepare 25Ni-5Er-Al2O3 catalysts. The fabrication method can partially influence the structural and catalytic activity of the nickel aluminate catalysts. Among the catalysts modified by Erbium prepared with various methods, the catalyst fabricated by ultrasonic pathway exhibited better catalytic performance and CH4 selectivity especially, at a temperature (400 ℃). The impact of the temperature of the reaction (200–500 °C) was examined under a stoichiometric precursor ratio of (H2:CO2) = 4: 1, atmospheric pressure, and space velocity (GHSV) of 25000 mL/gcath. The results demonstrate that the ultrasonic method is strongly efficient for fabricating Ni-based catalysts with a high BET surface area of about 190.33 m2g−1. The catalyst composed via the ultrasonic technique has 69.38 % carbon dioxide conversion and 100 % methane selectivity at 400 °C for excellent catalytic performance in CO2 methanation reactions. The fabrication effect can be associated with its high surface area, which is achieved via the hot spot mechanism. Besides, the addition of Erbium promotes the Ni dispersion on the supports and stimulates the positive reaction because of the erbium oxygen vacancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call