Abstract

In the Central Apennines (Italy), the project RETRACE-3D provided a reliable 3D model of the crust in the area affected by the 2016-17 Amatrice-Visso-Norcia seismic sequence, highlighting that the coseismic rupture at the surface can involve old inherited normal faults while the seismogenic sources lay at depth, possibly reactivating and inverting previous thrust faults, as in the case of the Mw 6.5 Norcia earthquake (30 october 2016). Here we present a 2D gravity model across the Central Apennines, spanning from the Tyrrhenian coast to the Adriatic Sea, aimed at completing and verifying the crustal geometries resulting from the 3D model itself. The cross-section was built integrating different types of data, such as surface geology, hydrocarbon wells, seismic lines, and results from receiver function analysis. It was then checked against gravity anomalies and the velocity distribution from Local Earthquake Tomography (LET), adding further details, and, finally, against seismicity recorded during the 2016-2017 sequence. The results substantiate the reliability of the geometries proposed in the RETRACE 3D model, as they fit well, except for some local misfits, with the other independent data, such as the Bouguer anomalies and the velocity distribution from LET. Furthermore, the integration of different types of data allowed us to describe in detail the structural setting of the Apennine chain also in the surroundings of the RETRACE study area, where the cross-section length exceeds the 3D model, and to add some new elements at seismogenic depths, that exceed those typical of hydrocarbon exploration. In particular, we were able to investigate the nature of the basement top and its relationship with seismotectonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call